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Abstract

\\A numerical method based on the axisymmetric, incom-
pressible Navier-Stokes equations is combined with a lifting
surface code to predict the vortex wake of hovering rotors.
The lifting surface code, AMI Hover, is used to obtain the cir-
culation distribution on the blade. This circulation distribu-
tion is fed into the Navier-Stokes code to compute the vortex
tion approach is used between thess two codes to converge the
circulation distribution and the shape of the vortex wake. A
relaxation scheme is developed to resclve the instability en-
countered among the tip vortices. A reconcentration scheme is
used to solve the diffusion problem due to the strong artificial
viscosity. The results from the present method are compared
with experimental data obtained by smoke-flow visualisation
and hot-wire measurements for several rotor blade configura-
tions. The comparisons show that the present method is able
to predict the complex wake system shed by a hovering rotor.

Vortex-dominated flow fields are frequently sncountered in
the flight operations of fixed- or rotary-wing aircraft. The vor-
tex wake shed by a hovering rotor is cne of the most complex
flow flelds in asrodynamics because of the highly nonlinear in-
teraction within the wake system and with the rotor. Complete
prediction cf the flow fleld is difficult, since the wake system
is extremely unstable as is confirmed by experiment. The dif-
ficulty also lies in the uncertainties encountered in predicting
the flow field, such as the appropriate model of the far wake
and the disparate Jength scales associated with the generation,
interaction, and eventual decay of the vortices.

Howevee, hover capability is one of the most important de-
sign goals for helicopters and other vertical take off and land-
ing (VTOL) aircralt, since these airczaft are designed 1o take
off and land vertically, and to hover for a relatively loag time
for rescue sttempts and other purposes. Hover performance
prediction is aleo essential because of the payload to grom-
weight ratio of such aircraft and the requirement to hover out
of ground effect. In predicting the performance of helicopters,
the vortex wake shed by the blades is a crucial element because
it stays close to the rotor plane and has a strong interaction

1 Ressarch Associots, Machenical Bugincering Dopartment.
$ Profosser, Moshaaissl Engincering Dopartasent.
* Ressarch Scisntist. Msmber AAA.

This paper is deslared @ work of the U.S. Gevernmant and
therefore is in the public domain.

r
Introduction \

Ha! |

with the blades. In fact, the vortex wake is an important ele-
ment in all helicopter problems including performance, struc-
tural loads, vibration, stability, and noise.

Moethods which assume the vortex interactions to be invis-
cid have proven very useful. The flow field is represented as
a meries of point or line vortices, then traced in a Lagrangian
frame. Unfortunately, a substantial amount of numerical damp-
ing is required to converge the solution because of the singular
behavioe of the point or line vortex; this numerical damping
might disturb the force-free conditions of the flow field. Panel
methods have been successful in predicting the performance of
& hovering rotor, but their role in fres-wake prediction is less
satisfactory.

The pressnt method represents the vortex wake as & coa-
tinuous distribution of vorticity. A Gaussiaa distribution of
vorticity is assumed across the vortex wake. The vorticities
are traced in an Eulerian frame. The movement of the vortex
wake is governed by the incompressible, axisymmetric Navier-
Stokes equations. It was found that repressating the vortex
wake as & continwous distribution of vorticity is more success-
ful than representing it as & series of point or line vorticss. The

' reason is that repressating & vortex shest as a lager of contine-
ous distributing vorticity eliminates singularitios in the compe-
tational domain. Although there is still instability among the
tip vortices, there is no instability in the inboard vortex shests.
Some of the tip vortex instabilities cbesrved in aumerical sim-
ulations closely ressmble thoss cbesrved in hover teste. The
sumerical tip-vortex instebility may be cansed by the wastable
characteristics of the wake eystem, and ot necessarily by the
sumerical scheme. A relaxation scheme is weed in the iteration
procedure to stabilise the tip vorticss. Diffwsion or artificial
viscosity wes another problem encountered in this work, which
was solved by periodically applying a reconcentretion schems.

Governing Equetions

‘The assumptions and governing equations are describad be-
low. In the caleulation of the vertex wabe shed by a fined-wing
aireraft, it is often assumed that the streamwise gradients are
emall. In the case of & rotor in hover, an anslegous assumptioa
is made; that because the circumfsrrential gradionts are small,
the streamwise development of the vortex wake can be reduced
to a time-dependent axisymmetric calculation (1.

The flow is assumed t0 be viscous and incompressible. ¥
the flow fisld is obesrved from an inertial cyliadrical coordi-
aste eystem ( (r,0,5) where ¢ and # deflne the plane of the
roter roteting about the vertical axis s ), the flow field in-
duced by & roter in hover is unsteady and thres-dimensional.
N chesrved frem & noninertial cosrdinate aystem rotating with
the retor blade, the flow fleld appears to be steady and thres-
dimensionsl. The inertial cosrdinate system is converted inte




a noainertial coordinate eystem by applying the following con-
dits
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‘The rotor blade rotates with angular speed (3 about the s—axis.
The threo-dimensional flow field is further reduced to an w-
steady axisymmetric flow field by sssuming (1) the circusnier-
ential velocity component and pressure gradisat are negligible
and (2) the rate of changs of the velocity gradients in the cie-
cumferential direction is smeall

A L P L N U

where «, v, and w are velocities in the ¢, 4, and s disections,
and p is pressure. This assumption is o streightforward en-
tension of a practice commoanly wed in fined-wing analysis to
reduce the steady threo-dimensional vorten webe rell-up cal-
culation to an uasteady two-dimensional calculation. The de-
velopment over time of the two-dimensional (in the case of
fixed-wing) or axisymmetric (in the case of & roter in hover)
flow fleld repressuts the streamwise dovelopment of the thees-
dimensional flow. The resulting axisymmetric continuity end
momentum equaticns are given below
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and the anisymmetric Laglation eperater is
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Nete that the sbove equatisns ase time-like in the vasi-
ahie ¢ repeessnting ciscombwentinl dovelopmant of the fow.
Bquaticns (2)-(3) can be oficiontly sslved in verticity-stecam-
function form e below

o- - v-H m

"0-3%--« ®
where ¢ is the stream function, and the vertisity is defined o
d b
Ll Tl ®
the veiecities ase defined »
-1 (10)
--;g n)

The amumption that v = 0 ementielly limite the analysis to
lssstions eutside the boundary lager of the biades. Bouations
(7) and (8) sagetioer wish the initial end bouandary conditions
csnstitute e initial-boundery-value probleme. The initial sen-
dition sasvespends phyvically to the verticity distribution ot
¢ =0 ead o small dintance circumbrontially downstream of
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the roter-blade trailing edge. The initial vorticity distribution
must be obtained by other means, such as from experimental
data or asumerical kfting-surface (or lifting-line) calculation.
A lifting-surface calculation [2] of the blade load distribution
is weed %0 determine the initial vorticity distribution in the
present work.

Two ests of boundary values are required in the calcula-
tioms. Owe is the sst of boundary valuss of vorticity for the
vorticity transport equation. The other is the set of bound-
ary valuse of stream function for the Poisson equation. The
vortioes shed by a blads are modeled by the Lamb vortex [3].

() = o exp (12)
7= m (13)

where r4 is the redius from the center of each vortex, r, is the
cave radius which gives the location of the maximum velocity
of the vertex, and v is the kinematic or eddy viscosity. The
circulation strength of the vortex is I', which is determined
by the circulation difference of the neighboriag points on the
blade.

Por cach Lamb vortex, the vorticity decays exponentially

from its conber

t = Ofexp (€ %)) 'Y d= (P 4+

(14)

Therefare, sare verticity is used on the boundary and is con-
sidesed as & resssnchie assumption as long as the boundary is
ouliciontly leng.

Per ciscular vertioss in an wnbounded domaein in which fiuid
pastisies come to rest far sway from the vorticms, the stream
funsticn can be cbtained by {4

¥s,rt) = ‘L'/_:[['ﬁL"",ﬂaw‘o
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whese

C=[(s-2YV+7+r" -2 cmt|'? (16)
ond ¢(#,7,8) is the valus of the verticity ot pesition (#,7)
ond timme ¢.

‘The above equation can be supanded as o series selutios if
the boundary entends o sulfliciont distance [§]. A very eficient
toshaigue is to cbtaia the boundary values by & series selution.
Par the pressat problom, o small grid sise is necessary 10 rescive
the Gow fSeld since the extent of the bouadery is not suitable
for the auries selution. Disect integration of Eq. (18) is weed
to ebtain the boundary valuss of the stream function for emall
grid dises.

Twe fnite-difforense methods are combined to seive the
vertisity transpest equation. One is the DulPort-Frenbel methed
and the other is the alternating-direction-implicit methed. Al
though the Dufert-Franbsl method is suitable for this preblem,
it requives the sslution of the current and the iast tixne stepe
o saive for the enlution of the next tims step. Por the preseat
prohiom, which is & pariedic preblom, oaly the informatien of
the current flow flald is known ot sach mew cycle; the infor
mation of the Sow flald ene time-step before is waclessr. In
the computation, & new lager of vorticity of the same strength
and distribution as the initial vorticity is added to the com-
putatisnal domain to repressat the vorten sheet shed by the
paming blade. This new lager of vorticity s added at enectly
the time when o blade passes by. At that moment, the only
information known is thet & vertex shest has besa shed by the
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blade; there is 20 information one time-step abeed. Thevelore,
another method is nesded to calculate the flow field at the
begining of each new cycle. The alternating-direction-implicit
method is chosen to accomplish this task, because this method
requires oaly the solution of the present time-step to find the
solution of the next time-step.

Computational Procedures

The computational procedures of the Navier-8tokes calcw-
lations are described in this ssction. The calculation starts by
estimating the shape of the vortex wake. This shape is used e
the input to the lifing surface code, AMI Hover, to obtain the
circulation distribution on the blade. The circulation distribe-
tion is then weed as the input to the Navier-Stokes calculation.
The calculation is terminated when the shape of the vortex
The converged wake shape is again wsed as the input to the
AMI Hover code. The output or the circulation distribution is
then used as the input to the Navier-Stokes calculation. This
process is repested until both the shape of the vortex wake and
the circulation distribution on the blade converge. i an uncon-
tracted vortex wake is assumed as the initial wabs, it weually
tabes ssven iterations to converge the results for two-bladed
rotors and nine iterations for four-bladed rotors. I a better
initial condition, such as the wake described by Landgrebe's
goneralised wabe equations (6], is wsed, it requires caly thres
to four iterations.

An iteration approach is wsed inside the Navies-Stchm cal-
culations. The calculation starts by distributing five to eight
free-to-move vortex shests. Each vortex shest is represented by
the superposition of a ssries of Lamb vortices. The strengthe
of the Lamb vortices are determined by the change in load dis-
tribution (cbtained from the AM] Hover code) betwesn grid
points with the core radius of each vortex prescribed to be
s fined percentage (in this case, 2% ) of the blade radive R.
Initially, the geometry of these vortex shests is described by
Landgrebe’s prescribed wabe equations 8], but the chape of
the wabe is determined by the mutual interaction of the wabe
olomant afier the calculstion begins. A comi-infinite vortex
cylinder is chossn as the far webe and is placed below these
free-to-move vortex shests with ite radiue equal to the radies of
the tip vortex of the iast free-vorten shest and its unit strength
determined by the strength and desconding velocity of the last
fres-tip vortax. At the time corvespendiag te & blade passage,
the last fres-vortex shest is removed and & new vortex shest,
the same as the initial vortex shest that was plased on the ro-
tor plane, is added te the rotor plane, hesping the number of
the freo-vorten shests constant. The relanation scheme (which
will be explained later) is ales applied 10 the tip vortices at this
timee to prevent the instability from growing. The vartex wabe
in forco-free and moves by its ewn interaction botwesa blade
pessages. R tabes about 30 min of CPU time for the Crey
X-MP/48 to convergs a vorten wabe by the Navier-Stabes cal-
culatisns.

The vorten wabe is integreted step by step betwesa any two
blade passages. At cach time step, the computational proce-

dure in:
1. Caiculate the boundary valuss of the stream fesction by
using Bq. (18).
3. Salve the Poissen equation, Eq. (8), te cbtaia the stream
fenction.

3. Obtain the velecity flold from the stream-function fleld.

4. Integrate the verten wahe one step forward by the vor-
ticity tramapert equation (Eq. (7)). The time step is do-

termined by the numerical stability criterion imposed by
the Dufort-Frankel method.

This process is repeated until another blade passes by. Typi-
cally it takes about 50 time steps to integrate the vortex wake
from one blade passage to another for & two-bladed rotor.

Balaxation aad R .

‘The vortex wake of & hovering rotor is extremely unstable;
s small perturbation can stimulate the instability, as is also
confirmed by experiment. The instability of small perturba-
tions to the vortex wake of a hovering rotor was investigated
by Bliss ot al. [7]. They converted the stability problem into an
sigeavalue problem and solved it numerically. They found that
most of the sigenvalues wers complex and many had positive
fore & time-marching spproach is probably mot adequate for
this problem, since this approach assumes the system is stable
and the perturbations will be damped out during the marching
process. But the vortex wake of a hovering rotor is unstable.
Since the tip vortices are the sourcs of the instability, an itera-
tion approach plus a relaxation scheme are used to investigate
this problem.

In the iteration approach, & mew layer of vorticity (or a
vortex shest) idemtical 4o the ome initially placed on the ro-
tor plans is added to the rotor plane st the time correspoad-
ing %0 & blade pamsage. Then the last layer of vorticity (an
inboard vortex shest plus & tip vortex) is removed, hopu(

of individual Lamb vortices along the computational grid rep-
ressating the rotor blade {1]. Betwesa blade passages, the flow
fleld is force-fres, i.e., the vorticss move according to their me-
tual interactions. Whenever s blade passes by, the positions of
the tip vertices are relaned by the following formule

A= - ) (17)
" = o + (™ - o) (18)

where rff® and 5" repressst the new radial and axial coor-
dinaten for the next leop of iterstion, "™ and of™**™ rep-
resent the coerdinates ot the end of the preseat loop, rff¢ end
off* repressat the coordinates at the beginniag of the pressat
loop, aad w is the relaxation factor. A relazation factor of 0.5
and 0.38 are wsed for the calculations of two- and four-bladed
retere, respectively.
The idea of the relazation is similar to those ideas wsed
in the other relanation metheds, such as the over-relaxstioa
mothod for ssiving the elliptic differential equations. First,
o uniqus solution is sssumed to emist, thea the ssarchiag is
started by reasing s proposed initial solution, and the final
solution is appreached by reducing the errors betwesa succes-
sive iteretions. Ia erder to apply the relanstion scheme to the
tip vortices, each lager of verticity is separated into two parts,
the tip vortex and the inbourd vortex shest. The seperation
point is the masimem circulation o the blade, siace it is e
sumed that the tip vortex rolls up from the blade tip to the
pesition of maximum circulstion. The tip vortex and inboerd
vartex shest are stoved in dillerent arrays. Whenever the relax-
atisn schems is applied, the centroid and streagth of sach tip
vorten is calculated by the Simpeca rule [8]. The controids are
weed a0 the Jocations of tip vorticss in the relaxation scheme.
Ansther problem encountered before meaningful resuits are
obtained is the diffusion (or artificial viscosity) probleen. This
problem eriginaten from the large grid sise weed in the mesh
eoystem. The thicknem of the vorten shest just shed by the
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blade is Jess then G.5% of the blade radius [§]. Accosding to
Rai (10, ot lsest 16 grid points acsess & Lamb-iype vertex core
is nessssary o provent encsssive numericel diffsicn. This is
beyoud the capability of sapsrcomputess ia the near future.
The grid siee weed in the caleulations is 1% of the blade
redius (the sumber of grid poiats in the rdirection is 161,
and is 513 in the s-direction). Each lager of vorticity remains
in the computatienal domaia for five to cight blade passages,
depending upon the sumber of vorticity lapers used in the i
ovation prossss. The verticity continues to diffuse dusing the
computational precess s & result of the strong astificial vie-
casity. Diffarent lagess of verticity overiap after two to theee
blade passages. This intraduses errors in their interections and

This echeme is applied at the time of blade passage. Each tip
vortex is reconcentreted as & Lamb vortex. e streangth is the
same as the original tip vortex, and the redins of the cere
is assumed 10 be twice the grid sise (3% of the blade redies
in the present case). Each inboard vortex shest is divided imte
subdivisions along the r-direction, typically with overy five grid
poimts a0 the width of 2 subdivision. The contreid and streagth
of all the vorticities inside cach subdivision are calculated by
the Simpeca rule [8]. The vorticitios inside sach subdivision ase
assumed t0 be repressnted by o concentrated Lamb vertex. e
strength equals the sum of the verticities in the subdivisien,
{4s cove redius is assumed t0 be twice the grid sine (3% of the
blade radius), and its losation is the controid of the verticities
ia the subdivisien.

A carvection te the self-induced velecity of & vertex ring is
added %0 cach tip verten te account for the deficiency caused
by the assumption of o large core radius. Por a verten riag,
the self-indused velecity is [3)

SRSl o
where [ is the strength of the verten ring, aad A and ¢ ase its
rediue and core radius, reapectively.

The cose redius wied in the calculations is 3% of the blade
redius. But the tip verten-sare radius of & twe-bladed reter ot
60° afber it in shed by the blads is abeut 0.3-0.0% of the blade
radius (8]. There is o significant difference in the magnituds
of the self-indused velecity, especially of the tip vertisss. Yos,
self-induced velocity is an impertant mecheniom for the dessent
of tip vortiess. Amm
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deficioncy. A value of 0.5% is wsed for the apeu.

Bemite sad Discussions

Eacouraging results are oblained after applying the relax-
stisn and reconcentration schemss. The calculations of theee
difforent cases has besn completed, and the results agres well
with experimental data. The first case studied is & Huey 1/7-
scale two-bladed reter (0] with an aspect retio of 13.7. An w-
csutracted verten wabe is assumed oo the initial chape of the
vertex wabe. The vorticity contour plot of the initial condition
of the Nevier-Btches calculations is shown ia Piguse 1. A sim-
pliied mothed, which uses & concontrated vorten (o represent
an inbeard verten shest, io wsed for the flret four iterations.
‘The pasition of this consentrated vorten in the controid of the
inboard verten shest, and its strength is 00% of the maximum
cisculation en the biade. The simplified methed is chosen be-
cause it requires very little computer time; also, its results give

& better initial condition for the complex Navier-Stokes calcu-
lations. The use of the uncontracied vortex wake as the initial
condition is of academic interest but certainly is not practics-
bls.

Pigeres 2 and 3 show the converging process of the cir-
culation distribution on the blade. Pigures ¢ aad § show the
converging procam of the shape of the vortex waks. From thess
figures we can see that when an uncomtracted vortex wake is
first assumed, the peak circulation is relatively flat, since the
tip vortex ncarest to the blade has & weaber interaction with
the blade. This results in & vortex wake which stays closer to
the rotor plane.

‘The peak value of the circulation ca the blade seems to be
the dominant clement in determining the shape of the wake.
‘The tip vertex nearest (0 the rotor plane has a decisive influ-
once on the thrust coefficient of the rotor. In gemeral, if the
tip vertex nearest to the rotor plane stays closer to the rotor
plane, it downgredes the thrust coefficient, through inducing
dowsward velocitiss te the inboard blade. Thess dowaward
velocitios reduce the angles of attack in the inboard portion
of the blade and thevefore degrade the thrust cosfficient. Al
though the fisst tip vortex does induce upward velocity to the
portion of the blade entboard of it, this outboard portion is
omall, sbout 10% of the blade radius (for & standard blade),
and cannet compensate the losses in the inboard portion of
the blade. The tip vortices imemediately below the first one
all have & strong tendency to push it upward, since they are
located fusther inboard from the firet tip vortex. The far wake
pushes the fient tip vertex down, but this effect is very limited,
shout the erder of upward induction from the second or the
thied tip verten bolow the fiest cne. The deminant mechaniom
that pushes the flest tip vertex down is its seif-induced veloc-
ity, whish is prapertisaal to the strength of circulation, and in
turn is determined by the peak circulation on the blade.

The previsus paregreph explaine why a small poak circn-
lation results in o denser vertex wabe (smalier anial distance
betwesn vertex shosts). Curve 2 of Pigure 3 shows the offects
of this demser verten wabe. There is & high poak circulation,
sinse the tip verten immedistely below the retor plans stays
vary clase to the plane and induces strong upward velocitiss
to the cutboasd portion of the biade. But the thrust coef
flslent actually is lover. Beth the shape of the vortex wabe
and the cieculation ea the blade converge quite well. This can
be ssen from the last two curves of Figure 3 and Figurs 8,
which are almest identical. The sumerical thrust coefficient is
0.0008 compased with the experimental valwe of 0.0037. Fig-
wre § showe the compariscn of the numerical resulte with the
exporimental data. The agresment is fairly good comsideriag
the uacertaintios and dificultios involved numerically and ex-
perimentaily.

The sscend case studied is a UTRC's (United Technolo-
gies Ressarch Center) kinsarly twisted two-bladed rotor, which
was wsed by Landgrebe in his hovering-rotor experinent |6
The twist rate is -8° and the aspect ratio is 18.2. Again the
circulation on the blade und the shape of the vortex wabe con-
verge quite well (Figuses § through 13). The numerical thrust
cosfficient is 0.0031 and the test value is 0.0028. The last
case stedied is an ONERA's (Ofice National d'Erudes b de
Recherches Asrcspetiales) linearly twisted four-bladed rotor
[11]. The twist rate is ~8.3° and the aspect ratio is 15. The
relaxation factor used in the relaxation scheme 1a this case 1»
0.38, since the selution divergm with s 0.3 relaxation factor
The divergence probably occurs because the spacing between
the tip vortices is emaelier and therefore is less stable and more
ssasitive to disturbances. The numerical thrust coefficient »
0.0075 and the test value is 0.0078 (Figures 14 through 19)
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in Pigures 16 and 17, the tip vortex trajectories move up be-
youd the rotor plane becauss of the epline fisting. According
to the asumerical results, the tip vortex stays very close (o the
rotor plane for & short time (after it is generated by the passing
blade) and then starts moving down; it doss not move beyond
the rotor plane.
Coaclusions

A sumerical method based oa the Navier-Stobhes calcula-
tioas was developed to predict the vortex wake of hoveriag
rotors. The calculations of thres diffierent hovering rotors were
completed. Whea results are compared with hover test dats,
the agresment is fairly good, comsidering the difficultion and
uncertainties involved sumerically and experimentally in the
problem. It wes found in the Navier-Stobes calculations that
s time-marching approach is not adequate for this problem,
since the instability grows rapidly during computations. The
reason is that the vortex wabe of & hovering rotor is extremely
unstable, as is confirmed by experiment. The source of inste-
bility in the iteration approach is in the tip vortices; there is
n0 instability in the inboard vortex shests. Soms of the inste-
bilities cbssrved in the numerical experiment without apply-
ing the relaxation echeme to the tip vortioss closely ressenble
somblance suggeste that the tip vortex instability may result
from the wastable characteristics of the vorten wabe sysiem,
sot from the sumerical schems. A relanation schoms is used
to diminish the instability during iterations. Ancther preblem
encountered is artificial viscesity, which wes ssived by periodic
wse of & reconcentration echeme.
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Figure 2 Comverging process of the circulation oa the blade
Sor the Huey 1/7-ecale two-bladed rotor
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Figure 3: Converging process of the circulation on the blade Figure 6: The comparison of numerical results with experi-
for the Huey 1/7-ecale two-bladed rotor. maental data for the Huey 1/7-scale two-bladed rotor.
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. Figure 4: Comverging process of the shape of the vortex wake Figure T: The shape of the converged vortex wake for the Huey
. for the Huey 1/7-ecale two-bladed rotor. 1/7-scale two-bladed rotor.
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Figure §: Converging process of the shape of the vortex wabe Pigure 8: Comverging procas of the circulation on the blade ‘

far the Muey 1/7-ecale two-bladed retor. for UTRC's linsatly twisted two-bladed rotor. |
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Figure 9: Converging process of the circulation on the blade
for UTRC’s linearly twisted two-bladed rotor.
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Figure 10: Coaverging process of the shape of the vortex wake
for UTRC's linearly twisted two-bladed rotor.
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Pigure 11: Converging process of the shape of the vortex wake
for UTRC's linearly twisted two-bladed rotor.
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Figure 12: The comparison of numerical results with experi-
mental data for UTRC’s linearly twisted two-bladed rotor.
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Figure 13: The shape of the converged vortex wake for UTRC'’s
linearly twisted two-bladed rotor.
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Figure 14: Converging process of the circulation on the blade
for ONERA'’s linearly twisted four-bladed rotor.
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Figure 15: Converging process of the circulation on the blade
for ONERA'’s linearly twisted four-bladed rotor.
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Figure 16: Converging process of the shape of the vortex wake
for ONERA'’s lineatly twisted four-bladed rotor.
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Figure 17: Converging process of the shape of the vortex wake
for ONERA's linearly twisted four-bladed rotor.
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Figure 18: The comparison of numerical results with experi-
mental data for ONERA'’s linearly twisted four-bladed rotor.
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Figure 19: The shape of the converged vortex wake for ON-
ERA’s linearly twisted four-bladed rotor.
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